201 research outputs found

    Experimental quantum teleportation over a high-loss free-space channel

    Full text link
    We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network

    Correlating Ultrasonic Velocity in DC04 with Microstructure for Quantification of Ductile Damage

    Get PDF
    The detection of ductile damage by image-based methods is time-consuming and typically probes only small areas. It is therefore of great interest for various cold forming processes, such as sheet-bulk metal forming, to develop new methods that can be used during the forming process and that enable an efficient detection of ductile damage. In the present study, ductile damage in DC04 was examined using ultrasonic testing. First, different grain sizes were set by heat treatment. Subsequently, the sheet metal was formed by cold rolling. A clear correlation between the average void diameter and the measured ultrasonic velocity could be shown. The ultrasonic velocity showed a clear decrease when the average void size increased because of the increasing forming degree. The ultrasonic measurements were finally employed to calculate a damage parameter D to determine the amount of ductile damage in the microstructure for different grain sizes after cold rolling

    Cold roll bonding of tin-coated steel sheets with subsequent heat treatment

    Get PDF
    One possibility to increase the interface strength of cold roll bonded materials is the application of a thin intermediate layer. In the present study, a tin coating was employed to strengthen the interface formed between cold roll bonded steel sheets, and the impact of subsequent heat treatment on the resulting bonding strength was investigated. To increase the bond strength by diffusion, the tin-coated steel bonds underwent heat post-treatment between temperatures of 150◦ C and 300◦ C for different dwell times. The results demonstrate that the use of tin as an active intermediate layer increases the bond area established. Moreover, the thin tin coating results in the formation of an active intermediate layer that directly takes part in the joining process by establishing a reactive link between the two substrates. A subsequent heat treatment further affects the bond strength by diffusion of tin at the interface. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Ion Beam Processing for Sample Preparation of Hybrid Materials with Strongly Differing Mechanical Properties

    Get PDF
    For studies of the interface zone of metallic composites with significantly differing mechanical properties across the interface, high-quality sample preparation is paramount. In particular, the analysis of the composition or geometric characteristics of intermetallic phases close to the interface requires a preparation specifically adapted to the actual sample. In the present study, the combination of ion beam processing and a conventional metallographic preparation routine is investigated. It is shown that by utilizing a suitable combination of metallographic and ion beam processing routines, the interface zone of metallic composites can be prepared specifically targeted to a given analytical task. Especially for material combinations with largely differing mechanical properties of the base materials, ion beam processing can greatly improve the sample preparation quality. © 2020, The Author(s)

    Oxygen-Free Production—From Vision to Application

    Get PDF
    As oxygen negatively affects most production processes in the metalworking industry, a truly oxygen-free production environment appears attractive in terms of the resulting material and component properties. This overview summarizes research conducted within the Collaborative Research Centre (CRC) 1368. The objectives of this CRC are twofold. First, a fundamental understanding of the mechanisms that govern the interaction between a metal surface and the environment is established. Second, it is researched how this understanding can be exploited to improve current production processes and even develop completely new ones. Herein, data obtained within the first funding period, which already demonstrate that significant effects can be realized in processes such as thermal spraying, cold rolling, compound casting, laser brazing, milling or hot stamping to name just a few examples, are presented. In addition, key aspects such as initial deoxidation of the workpieces, their transport under conditions that prevent reoxidation, and the tools needed to establish and control an oxygen-free process environment are given, and the ramifications with respect to actual applications are discussed

    Towards dry machining of titanium-based alloys: a new approach using an oxygen-free environment

    Get PDF
    In the current study, the potential of dry machining of the titanium alloy Ti-6Al-4V with uncoated tungsten carbide solid endmills was explored. It is demonstrated that tribo-oxidation is the dominant wear mechanism, which can be suppressed by milling in an extreme high vacuum adequate (XHV) environment. The latter was realized by using a silane-doped argon atmosphere. In the XHV environment, titanium adhesion on the tool was substantially less pronounced as compared to reference machining experiments conducted in air. This goes hand in hand with lower cutting forces in the XHV environment and corresponding changes in chip formation. The underlying mechanisms and the ramifications with respect to application of this approach to dry machining of other metals are discussed

    Towards dry machining of titanium-based alloys : A new approach using an oxygen-free environment

    Get PDF
    In the current study, the potential of dry machining of the titanium alloy Ti-6Al-4V with uncoated tungsten carbide solid endmills was explored. It is demonstrated that tribo-oxidation is the dominant wear mechanism, which can be suppressed by milling in an extreme high vacuum adequate (XHV) environment. The latter was realized by using a silane-doped argon atmosphere. In the XHV environment, titanium adhesion on the tool was substantially less pronounced as compared to reference machining experiments conducted in air. This goes hand in hand with lower cutting forces in the XHV environment and corresponding changes in chip formation. The underlying mechanisms and the ramifications with respect to application of this approach to dry machining of other metals are discussed. © 2020, MDPI AG. All rights reserved

    Influence of Pre-strain on Very-Low-Cycle Stress–Strain Response and Springback Behavior

    Get PDF
    The influence of pre-strain on the very-low-cycle loading behavior as occurring, for example during roller leveling of sheet metals, is not yet fully understood. A key factor in this context is the stiffness of the material and its changes upon processing. To study the general mechanical property changes during low-cycle loading with small amplitudes for a wide variety of metals, sheet samples of mild steel DC01, pure copper CU-DHP and α-titanium are subjected to low-cycle tension–compression tests. The general influences of pre-strain and the applied strain amplitude are investigated regarding material hardening and changes in the elastic properties. It is shown that all tested materials feature changes in the Bauschinger behavior during cycling. The apparent elastic modulus of the materials decreases with increasing accumulated plastic strain, and the evolution depends on the strain amplitude and the pre-strain. For all three materials, changes in technical springback are present and depend on the loading history. © 2020, The Author(s)
    • …
    corecore